
Proceedings of Machine Learning Research vol 75:1–24, 2018 31st Annual Conference on Learning Theory

Active Tolerant Testing

Avrim Blum AVRIM@TTIC.EDU

Toyota Technological Institute at Chicago, Chicago, IL, USA

Lunjia Hu HULJ14@MAILS.TSINGHUA.EDU.CN

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

Editors: Sébastien Bubeck, Vianney Perchet and Philippe Rigollet

Abstract

In this work, we show that for a nontrivial hypothesis class C, we can estimate the distance of a

target function f to C (estimate the error rate of the best h ∈ C) using substantially fewer labeled

examples than would be needed to actually learn a good h ∈ C. Specifically, we show that for

the class C of unions of d intervals on the line, in the active learning setting in which we have

access to a pool of unlabeled examples drawn from an arbitrary underlying distribution D, we can

estimate the error rate of the best h ∈ C to an additive error ε with a number of label requests that

is independent of d and depends only on ε. In particular, we make O(1

ε6
log 1

ε
) label queries to an

unlabeled pool of size O(d

ε2
log 1

ε
). This task of estimating the distance of an unknown f to a given

class C is called tolerant testing or distance estimation in the testing literature, usually studied in

a membership query model and with respect to the uniform distribution. Our work extends that of

Balcan et al. (2012) who solved the non-tolerant testing problem for this class (distinguishing the

zero-error case from the case that the best hypothesis in the class has error greater than ε).
We also consider the related problem of estimating the performance of a given learning algo-

rithm A in this setting. That is, given a large pool of unlabeled examples drawn from distribution

D, can we, from only a few label queries, estimate how well A would perform if the entire dataset

were labeled and given as training data to A? We focus on k-Nearest Neighbor style algorithms,

and also show how our results can be applied to the problem of hyperparameter tuning (selecting

the best value of k for the given learning problem).

Keywords: property testing, agnostic learning, algorithm estimation

1. Introduction

Suppose you are about to embark on a project to label a large quantity of data, such as medical

images or street scenes. Your intent is to then feed this data into your favorite learning algorithm

for, say, a medical diagnosis or robotic car application. Before embarking on this project, can you,

from just a few (perhaps well-chosen) labels, estimate how well your algorithm can be expected to

perform when trained on the large sample? Here, “few” should mean much less than the number of

labeled examples needed for learning, and in particular we will be interested in cases where we can

do this with a number of labels that does not depend on the complexity of the target function. We

consider this question in two related contexts.

Tolerant testing: Here, the goal is to approximate the distance of a target function f to a hy-

pothesis class C. Specifically, consider a hypothesis class C of VC-dimension d, where d should be

thought of as large. (We will generally think of d as large and ε as constant.) If we wish to find an

c© 2018 A. Blum & L. Hu.

ACTIVE TOLERANT TESTING

ε-best hypothesis in C, we will need roughly O(d/ε2) labeled examples. However, if we just want

to estimate what its error rate is without actually finding it, can we do this from less data?

The “realizable” version of this question is the problem of passive and active property testing,

studied by Kearns and Ron (1998) and Balcan et al. (2012). That work considers the problem of

distinguishing (a) the case that the target function f belongs to class C from (b) the case that the

target function f is ε-far from any concept in C with respect to the underlying data distribution

D. For instance, suppose our data consists of points x on the real line, labeled by f as positive or

negative, and we are interested in learning using the class C consisting of unions of d intervals. This

class has VC-dimension 2d and so would require Ω(d) labeled examples to learn. However, Balcan

et al. (2012) show that in the active testing framework (one can sample poly(d) unlabeled examples

for free and then query for the labels of a small number of those examples), one can solve the testing

problem using only a constant number of label queries (when ε is constant), independent of d.

One limitation of these results, however, is that they do not guarantee to give a meaningful

answer when the target function is “almost” in the class C. For instance, suppose f can be perfectly

described by a union of 10,000 intervals but is ε/2-close to a union of 100 intervals. Then we would

like a tester that can say “good enough” at d = 100 rather than telling us that we need d = 10, 000.

The tester of Balcan et al. (2012), unfortunately, seems to require f to be O(ε3)-close to a union of

d intervals in order to guarantee an output of YES, which is much less than ε.
In this work, we give algorithms for such tolerant testing (Parnas et al., 2006) for the case of

unions of intervals and a few related classes. We can distinguish the case that the best function in C
has error rate ≥ 2ε from the case that the best function in C has error rate ≤ ε, and more generally

we can estimate the error rate α of the best function in the class up to ±ε. Thus, for the first time,

from a small number of label queries, we can solve the property-testing analog of the notion of

agnostic learning.

One point we wish to make up front: while the classes of functions we consider are fairly

simple, such as unions of intervals on the line, we are operating in a challenging model. We would

like algorithms that work for any (unknown) underlying data distribution D, not just the uniform

distribution, and we want algorithms that only query for labels from among examples seen in a

poly-sized sample of unlabeled data drawn from D rather than querying arbitrary points in the input

space. These are important conditions for being able to use property testing for machine learning

problems.

Algorithm estimation: The second context we consider is that we are given a learning algorithm

A and a large unlabeled sample S of N examples drawn from distribution D. If we were to label

all N examples of S and feed them into algorithm A, then A would produce some hypothesis (call

it hS) with some error rate α. What we would like to do is, by labeling only very few examples in

S, and perhaps a few additional examples drawn from D, to estimate the value of α (so that we can

determine whether our project of labeling all examples in S is worthwhile).

To get a feel for this problem, one algorithm A for which this task is easy is 1-Nearest Neighbor

(1-NN). This algorithm would produce a hypothesis hS that on any given query point x predicts

the label of the example x′ ∈ S that is nearest to x. For this algorithm, we can easily estimate the

error rate of hS from just a few label queries by repeatedly drawing a random x from D, finding

the point x′ ∈ S that is closest to x, and then requesting the labels of x and x′ to see if they agree.

We only need to repeat this process O(1/ε2) times in order to estimate the error rate of hS to ±ε.

2

ACTIVE TOLERANT TESTING

This works because hS is constructed, and makes predictions, in a very local way.1 In this work, we

extend this to different forms of k-Nearest Neighbor algorithms, where the prediction on some point

x depends on the k nearest examples in S, developing estimators for which the number of queries

does not depend on k. This then allows us to use this for hyperparameter tuning: determining the

(approximately) best value of k ∈ {1, . . . , N} for the given application.

2. Property Testing Background and Models

2.1. Query Testing (Standard Property Testing)

Given functions f and g over domain X , we define the distance between f and g with respect to

distribution D over X to be

distD(f, g) = Pr
x∼D

[f(x) 6= g(x)]. (1)

Given a class C of functions over domain X and a margin ε, a property tester distinguishes the case

that the input function f is in the class C from the case that f is ε-far from C:

1. if f ∈ C, the tester accepts f with probability at least 2
3 ;

2. if ∀g ∈ C, distD(f, g) > ε, the tester rejects f with probability at least 2
3 .

Rubinfeld and Sudan (1996) first studied the property testing model assuming X is finite and D is

uniform. We call the testing model of Rubinfeld and Sudan (1996) as query testing, because the

tester makes queries to access f , i.e., the tester asks for the value of f(x) for some x ∈ X for each

query it makes.

Parnas et al. (2006) first studied the tolerant version of property testing: given an additional

parameter, the threshold α, to distinguish a function α-close to the class from a function (α+ ε)-far

from the class. In other words,

1. if ∃g ∈ C, distD(f, g) ≤ α, the tester accepts f with probability at least 2
3 ;

2. if ∀g ∈ C, distD(f, g) > α+ ε, the tester rejects f with probability at least 2
3 .

They showed tolerant testers for clustering and for monotonicity in the query testing model. Fischer

and Fortnow (2005) showed the existence of classes of binary functions that are efficiently query-

testable in the non-tolerant case but are not efficiently query-testable in the tolerant case.

Parnas et al. (2006) also considered a similar task called distance approximation: estimating the

distance from the function to the class so that with probability at least 2
3 the output is within ±ε

to the true distance. Note that distance approximation with additive error ε implies tolerant testing

with margin 2ε with the same query complexity. Based on this observation, all the tolerant testers

we design in this paper actually perform distance approximation (so we don’t need the parameter

α) because distance approximation is a slightly more convenient model for our presentation.

1. In contrast, note that estimating the error rate of this algorithm could require a large labeled sample if we only

passively receive labeled examples. Specifically, suppose the distribution D is uniform over c clusters and the 1-NN

algorithm aims to use N = c log c
δ

examples, so that with probability at least 1 − δ, every cluster has at least one

training example in it. We want to distinguish two cases: either every cluster is pure but random so the error rate is

roughly 0, or every cluster is 50/50 so the error rate is roughly 1

2
. To distinguish these cases, the estimator needs to

see at least two labels in the same cluster, implying an Ω(
√
c) = Ω(

√

N/ logN) passive sample size lower bound.

3

ACTIVE TOLERANT TESTING

2.2. Passive Testing (Sample-Based Testing)

Goldreich et al. (1998) first studied testers with the ability to obtain a random sample in addition to

making queries so that the tester can potentially work on arbitrary distributions (see Section 2.4 for

distribution-free testing), although their algorithmic results remained in the query testing framework

over the uniform distribution. Kearns and Ron (1998) developed the first passive testers, testers that

don’t make queries and only rely on the random i.i.d. sample to access the input function f , for

a variety of classes with sub-learning sample complexity. Goldreich and Ron (2013) advanced the

study of passive testers by providing several general positive results as well as by revealing relations

with other testing models.

Proper learning implies testing, simply by testing using the output hypothesis, but passive test-

ing can be substantially harder than improper learning. Goldreich et al. (1998) pointed out that the

class of k-term-DNF is NP-hard for non-tolerant passive testing while it is efficiently PAC learnable

via k-CNF (Pitt and Valiant, 1988), if we require testing and learning on an arbitrary distribution.

The general hardness of tolerant passive testing based on hardness of improper agnostic learning

can be implied from the recent work by Kothari and Livni (2018). They considered the task of

refutation: for any fixed distribution D over domain X , given a sample of example-label pairs

{(xi, yi)} and margin ε > 0, to distinguish the following two cases:

1. accept when every (xi, yi) is i.i.d. from some distribution D′ over X × {0, 1} with marginal

on X being D and ∃f ∈ C,Pr(x,y)∼D′ [f(x) 6= y] ≤ 1
2 − ε;

2. reject when every xi is i.i.d. from D and every yi is i.i.d. from the uniform distribution over

{0, 1}.

They showed that a refutation algorithm for distribution D with margin ε and sample complexity s
implies an improper agnostic learning algorithm for the same distribution with error 3ε and sample

complexity O(s
3

ε2
). We show in Appendix A that the refutation algorithm can be reduced to a tolerant

passive tester for arbitrary unknown distributions with threshold α = 1
2 − 3ε

4 , margin ε
2 , and sample

complexity Ω(s), implying that tolerant passive testing for arbitrary unknown distributions can’t

be substantially more sample-efficient than improper agnostic learning for any distribution D (with

some reasonable assumptions about the distribution D).

2.3. Active Testing

Both query testing and passive testing have shortcomings. The assumption of query testing that the

tester can make queries to arbitrary points in the domain is usually impractical, while passive testing

is too restrictive: for the tolerant case, passive testing can’t be substantially more sample-efficient

than agnostic learning (recall Section 2.2).

To avoid both shortcomings, Balcan et al. (2012) proposed the active testing model where the

tester first receives an unlabeled random i.i.d. sample and then makes queries to points in the sample.

While the size of the unlabeled sample might be comparable to the labeled sample complexity for

learning, the number of queries the tester makes should be substantially smaller. They showed

(non-tolerant) active testers for unions of d intervals and for linear separators.

2.4. Distribution-Free Testing

Distribution-free testing (Goldreich et al., 1998) considers testers that work on arbitrary unknown

distributions with the ability to obtain random i.i.d. sample in addition to making queries. Halevy

4

ACTIVE TOLERANT TESTING

and Kushilevitz (2003) designed distribution-free testers for low-degree multivariate polynomials,

monotone functions, and several other classes.

The difference between distribution-free testing and passive testing (over arbitrary unknown

distributions) is that distribution-free testers have the ability to make queries while passive testers

don’t. However, the query ability is helpful only when we do non-tolerant testing where the tester

is only required to accept functions in the class, rather than functions having distance 0 to the class

with respect to the unknown distribution. For tolerantly testing binary functions, we show that

distribution-free testing implies passive testing with the same sample complexity (see Section 5

Lemmas 3 and 6) and thus the hardness for tolerant passive testing extends automatically to tolerant

distribution-free testing.

3. Our Results and Methods

Tolerant testing: We show (Theorem 8) that in the active testing model, there is a tolerant tester

that approximates the distance of a function to the class of unions of d intervals on the line up to an

additive error ε using O(1
ε6
log 1

ε) label queries on O(d
ε2
log 1

ε) unlabeled examples.

We begin by assuming data is drawn from the uniform distribution U over [0, 1] and then later

generalize to arbitrary distributions D. Our tester evenly partitions [0, 1] into m = Θ(εd) segments,

and focuses on l = O(poly(ε−1)) segments chosen uniformly at random (without replacement).

On the union of the chosen segments, we test how close is the function to the class of (roughly)
dl
m = O(poly(ε−1)) intervals by a proper agnostic learning algorithm.

One challenge we face is that the number of intervals on each segment might vary drastically, so

that the sample of segments is unable to capture the entire information on the whole domain [0, 1].
To address this challenge, we observe that on each segment, t = Θ(1

ε2
) intervals are sufficient to

approximate the distance within an additive error O(ε), and we change the class of unions of d
intervals to the class of unions of d intervals truncated by t in our algorithm based on this observa-

tion. This gives us a (roughly) (ε, 1+ ε)-bi-criteria tester for the class of unions of intervals, i.e., we

estimate the distance up to additive error ε and approximate the number of intervals up to a factor of

1+ ε. Balcan et al. (2012) showed that any function that is a union of (1+ ε)d intervals has distance

O(ε) to a union of d intervals, implying that any function that is α-close to a union of (1 + ε)d
intervals is α+O(ε) close to a union of d intervals, leading to the uni-criterion tester desired.

Our algorithm implements a reduction that if we can do tolerant testing when d is small (poly(ε−1)),
we can do tolerant testing for any d, with query complexity independent of d. We abstract this re-

duction as the composition lemma (Lemma 7), which may be useful for tolerant testing for other

classes. Indeed, the reduction works also for (ε, 1 + ε)-bi-criteria tolerant testing for surface area

for arbitrary ε > 0, where the class consists of functions f : Rn → {0, 1} satisfying f−1(1) has

a small surface area (see Section 4.2 for related work). For example, consider the class of func-

tions with Gaussian surface area (see (Klivans et al., 2008) for definition) at most S with respect

to the standard Gaussian distribution over Rn. We can first use m = Θ(εS) hyperplanes to evenly

partition R
n into 2m parts and focus on l = O(poly(ε−1)) random parts. If we could do tolerant

testing on the l parts for S = O(poly(ε−1)), then we could do bi-criteria tolerant testing for general

S with query complexity independent of S. However, the difficulty for tolerant testing surface area

is that we do not know how to do this even when S is small. Klivans et al. (2008) have shown an

agnostic learning algorithm using nO(S2) samples for the class of concepts with Gaussian surface

5

ACTIVE TOLERANT TESTING

area at most S over Gaussian distributions on R
n, but their algorithm is improper, not being able to

imply a tolerant testing algorithm directly.

To generalize our tester for the class of unions of intervals from the uniform distribution on

[0, 1] to arbitrary unknown distributions, we show a general relationship between active testing and

query testing for arbitrary distributions in Lemmas 2 and 5, which also improves a previous result

in (Balcan et al., 2012) by showing that the unlabeled sample complexity of non-tolerant property

testing for unions of d intervals on arbitrary unknown distributions can be reduced to O(dε log
1
ε),

from O(d
2

ε6
) (implicit) in their original paper. We also generalize the result in (Balcan et al., 2012)

for actively testing the class of unions of testable functions to the tolerant case in Appendix B.

Algorithm estimation: For the k-Nearest Neighbor (k-NN) algorithm with soft predictions and

pth-power loss (the prediction on a point x is the average label of the k nearest examples to x in a

random sample of size N , and we use the pth-power loss to penalize mistakes) we show in Theorem

9 that this loss can be estimated up to an additive error ε using O(p
ε2
) queries on N+O(1

ε2
) unlabeled

examples, even when the data distribution is unknown to the estimator. The same result also holds

for Weighted Nearest Neighbor algorithms, where the prediction on a point x is a weighted average

of the labels of all the examples depending on their distances to x (see Appendix E). For the O(p
ε2
)

query complexity upper bound, we show a matching lower bound (Theorem 17). In the case where

k is a quantity to be optimized, we show an algorithm that finds an approximately-best choice of

k up to an additive error ε using roughly O(p
2 logN
ε3

) queries on roughly N + O(p logN
ε3

) unlabeled

examples (Theorem 10). For k-NN with hard predictions (the prediction is a strict majority vote

over the k nearest neighbors), we show that it’s impossible to estimate the performance with query

complexity independent of k (Theorem 18 in Appendix G).

We note that there are three natural but somewhat different ways to model the task of estimating

the error rate of algorithm A trained on dataset S. Let error(hS) denote the error rate of hypothesis

hS with respect to distribution D, and let α̂ be the output of the estimator E that estimates error(hS).
In the first model, we require that α̂ be a good estimate of error(hS) with probability at least 2

3 for

any training set S, even sets S not drawn from D. In the second model, we only require that E be

accurate when S is drawn from D (that is, the 2
3 probability is over both the internal randomness in

E and in the draw of S). Finally, in the third model, S is drawn from D but E does not have access

to it: instead, E has the ability to draw (a polynomial number of) fresh unlabeled examples and to

query points from them. That is,

1. In the first model, we require that ∀S,PrE(S)[|α̂− error(hS)| ≤ ε] ≥ 2
3 .

2. In the second model, we require that PrS,E(S)[|α̂− error(hS)| ≤ ε] ≥ 2
3 .

3. In the third model, we require that PrE [|α̂− ES [error(hS)]| ≤ ε] ≥ 2
3 .

Roughly, the first model is the hardest while the third model is the easiest. All our upper bounds and

lower bounds in this paper apply to all three models with slight modifications, though for simplicity

of presentation we focus on the second model throughout the paper.

6

ACTIVE TOLERANT TESTING

4. Additional Related Work

4.1. Testing Unions of d Intervals

We use I(d) ⊆ {0, 1}R to denote the class of functions f ∈ {0, 1}R satisfying that f−1(1) can be

written as a union of at most d intervals. Note that for d ∈ N, the VC-dimension of I(d) is 2d.

We use ID(d, α) to denote the class of functions that are α-close to I(d), i.e. ID(d, α) =
{f ∈ {0, 1}R : ∃g ∈ I(d), distD(f, g) ≤ α}. Using this notation, property testing for unions of d
intervals is to distinguish f ∈ I(d) and f /∈ ID(d, ε).

In previous work, Kearns and Ron (1998) showed a (ε, 1ε)-bi-criteria tester for the class of

unions of d intervals in the passive testing model, over the uniform distribution U on [0, 1]. The

tester distinguishes f ∈ I(d) and f /∈ IU (dε , ε) using O(
√
d

ε1.5
) samples. Their tester also works

in the standard query testing framework, using O(1ε) queries. Balcan et al. (2012) improved this

work by showing that in the active testing framework, there is a uni-criterion testing algorithm that

can distinguish f ∈ I(d) and f /∈ IU (d, ε) using O(1
ε4
) queries on O(

√
d

ε5
) unlabeled examples.

Kothari et al. (2014) slightly improved the query complexity to O(1
ε3.5

) as the one-dimensional

special case when studying the more general problem of testing surface area. Though they were

considering the query testing framework, the tester can be easily implemented in the active testing

model using the same number of label queries. The tester of Kothari et al. (2014) is similar to that

of Balcan et al. (2012), using a “Buffon’s Needle”-type algorithm to estimate the “noise sensitivity”

of the function being tested. Kothari et al. (2014) provided a stronger analysis than Balcan et al.

(2012), roughly allowing the length of the “needle” to be longer by a factor of ε−0.5, leading to

the improvement of the query complexity. The tester can be generalized to a testing algorithm that

distinguishes f ∈ IU (d, ε1) and f /∈ IU (d, ε) when ε1 = O(ε2.5) using the same number of queries

and unlabeled examples, but can’t be directly adapted to the ε1 =
ε
2 case, or general tolerant testing.

Our tolerant tester for the class of unions of intervals uses a completely different technique.

As pointed out by Balcan et al. (2012), the tester can be generalized from the uniform dis-

tribution on [0, 1] to any unknown distribution by taking the advantage of unlabeled examples to

approximate the CDF of the distribution to enough accuracy using O(d
2

ε6
) unlabeled examples. This

unlabeled sample complexity is improved to O(dε log
1
ε) in our paper, by revealing a general rela-

tionship between active testing and query testing (see Section 5).

4.2. Testing Surface Area

Kothari et al. (2014) first studied the problem of property testing for the class C(A) of functions

f : (0, 1)n → {0, 1} satisfying f−1(1) has surface area at most A over the uniform distribution,

which is the high-dimensional version of testing the class of unions of d intervals. They showed a

tester that can distinguish f ∈ C(A) and f is ε-far from C(κA) with any κ > 4
π ≈ 1.27 using O(1ε)

queries. Neeman (2014) improved the analysis, showing that an essentially identical tester works

for any κ > 1. They both showed similar results for Gaussian surface area.

The testers of Kothari et al. (2014) and Neeman (2014) (together with the tester of Balcan et al.

(2012) for unions of intervals) are all based on estimating the “noise sensitivity” of the function

and accepting (rejecting) if the “noise sensitivity” is small (large). They showed that a function

in the class has a relatively small “noise sensitivity” and a function ε-far from the class (with a

bi-criteria approximation factor) has a relatively large “noise sensitivity”. This argument can’t be

extended to the tolerant case for (ε, κ)-bi-criteria testing for arbitrary κ > 1, ε > 0: while it is

7

ACTIVE TOLERANT TESTING

true that a function α-far from the class (with a bi-criteria approximation factor of κ) has a large

“noise sensitivity”, a function (α − ε)-close to the class doesn’t necessarily have a smaller “noise

sensitivity” (the function has to be O((κ− 1)2α)-close to the class in order to have a smaller “noise

sensitivity” based on the analysis of Neeman (2014)).

5. Relationship between Active Testing and Query Testing

The following Lemma from VC theory shows that when doing non-tolerant testing, the distribution

can be assumed to have a finite support with size bounded by a function of the VC-dimension of the

concept class.

Lemma 1 There exists an absolute constant c satisfying the following property. Let C be a concept

class over domain X with VC-dimension d. Let f be any function that is ε-far from class C with

respect to distribution D over X . Let D′ be the uniform distribution over a random iid sample from

D of size at least d cdε log 1
ε e. Then it holds that f is ε

2 -far from class C with respect to distribution

D′ with probability at least 9
10 over the random choice of the sample.

Therefore, when we perform non-tolerant testing in the active model, we can first sample

d cdε log 1
ε e unlabeled examples and choose D′ to be the uniform distribution over these examples.

The active testing task over D′ is almost the same as query testing, because the active tester can

query arbitrary points in the support of D′, leading to the following Lemma.

Lemma 2 Let C be a concept class on ground set X with VC-dimension d. Suppose ε ∈ (0, 12).
Suppose there is a non-tolerant query tester A with margin ε

2 using at most q queries on an arbitrar-

ily given distribution with finite support. Suppose all the queries tester A makes lie in the support

of the distribution. Then, there is a non-tolerant active tester B with margin ε using at most O(q)
queries on O(dε log

1
ε) unlabeled examples for an arbitrary distribution unknown to tester B.

Since Balcan et al. (2012) have an algorithm in the query testing framework that can distinguish

f ∈ I(d) and f /∈ ID(d, ε) for arbitrarily given distribution D using O(1
ε4
) queries and the tester

only makes queries in the support of D, there is an algorithm in the active testing framework that

can distinguish f ∈ I(d) and f /∈ ID(d, ε) using O(1
ε4
) queries on O(dε log

1
ε) unlabeled examples,

even when the distribution D is unknown, according to Lemma 2. Here, the unlabeled sample

complexity is O(dε log
1
ε), an improvement from O(d

2

ε6
) (implicit) in their original paper.

The query tester A in Lemma 2 is required to query only points in the support of the distribution.

This requirement can be removed if A accepts f when f has distance 0 to C with respect to the

distribution, because in this case the values of f for points outside the support contain no information

useful for the tester. The following Lemma shows that such a tester in the distribution-free model

implies a passive tester over arbitrary unknown distributions.

Lemma 3 Suppose we have a non-tolerant distribution-free tester with margin ε
2 and sample com-

plexity s for class C with VC-dimension d, and the tester accepts f when f has distance 0 to the

class C. Then there is a non-tolerant passive tester with margin ε and sample complexity O(s) for

arbitrary unknown distribution D with no massive points2.

2. We say x0 is a massive point if Prx∼D[x = x0] > 0.

8

ACTIVE TOLERANT TESTING

Proof Imagine we are performing non-tolerant testing in the passive model. The tester first obtains

a sample S of size s. When s < d cdε log 1
ε e, where c is defined in Lemma 1, we enlarge S to a

bigger sample S′ of size d cdε log 1
ε e, though only S is revealed to the tester. When s ≥ d cdε log 1

ε e,

we simply define S′ = S. The testing task is then transformed to a testing task over distribution

D′ uniform over S′ with margin ε
2 and success probability at least (23)/(

9
10) = 20

27 , according to

Lemma 1. We then perform distribution-free testing with sample S. Note that the distribution D
has no massive points, so with probability 1 no queries made by the distribution-free tester lie in

S′\S and thus the queries provide no information useful for the distribution-free tester. Therefore,

we can assume the tester gets value 0 for all the queries it makes outside S.

Lemmas 1, 2 and 3 can be naturally generalized to the tolerant case as follows.

Lemma 4 There exists an absolute constant c satisfying the following property. Let C be a concept

class over domain X with VC-dimension d. Let f be any function that has distance α to class C
with respect to distribution D over X . Let D′ be the uniform distribution over a random iid sample

from D of size at least d cd
ε2
log 1

ε e. Then it holds that f has distance within α ± ε to class C with

respect to distribution D′ with probability at least 9
10 over the random choice of the sample.

Lemma 5 Let C be a concept class on ground set X with VC-dimension d. Suppose ε ∈ (0, 12).
Suppose there is a tolerant query tester A with additive error ε

2 using at most q queries on an arbi-

trarily given distribution with finite support. Then, there is a tolerant active tester B with additive

error ε using at most O(q) queries on O(d
ε2
log 1

ε) unlabeled examples for an arbitrary distribution

unknown to tester B.

Lemma 6 Suppose we have a tolerant distribution-free tester with additive error ε
2 and sample

complexity s for class C with VC-dimension d. Then there is a tolerant passive tester with additive

error ε and sample complexity O(s) for arbitrary unknown distribution D with no massive points.

6. The Composition Lemma

Balcan et al. (2012) showed that disjoint unions of testable properties are testable in the non-tolerant,

active model. We extend their result to tolerant testing in Appendix B. Here, we propose a more

general notion of a certain concept class formed by composing smaller concept classes on disjoint

ground sets.

Suppose we have m disjoint ground sets X1, X2, · · · , Xm and on each Xi, we have a sequence

of concept classes C0
i , C1

i , C2
i , · · · ⊆ {0, 1}X . Suppose C0

i 6= ∅ for all i. We use X to denote the

disjoint union
m⋃
i=1

Xi. For any d ≥ 0, we define a concept class P(d) on X to be the class of

functions f ∈ {0, 1}X satisfying that ∃k1, k2, · · · , km ∈ N s.t.

1.
m∑
i=1

ki ≤ d;

2. ∀1 ≤ i ≤ m, f |Xi
∈ Cki

i .

We call P a composition of m additive properties. Note that P(0) = {f ∈ {0, 1}X : ∀1 ≤ i ≤
m, f |Xi

∈ C0
i }, matching the definition of a disjoint union of properties in (Balcan et al., 2012).

Also note that P(0) 6= ∅ because of the assumption that C0
i 6= ∅ for all i.

9

ACTIVE TOLERANT TESTING

For a given t ≥ 0, we define a composition Pt in the same way as P except that we further

require every ki to be at most t, or, Pt is a composition of m additive properties truncated by t.
For any distribution D over X , we use PD(d, α) to denote functions that are α-close to P(d)

with respect to D, i.e. PD(d, α) = {f ∈ {0, 1}X : ∃g ∈ P(d), distD(f, g) ≤ α}. Similarly, we

define Pt
D(d, α) = {f ∈ {0, 1}X : ∃g ∈ Pt(d), distD(f, g) ≤ α}. We say D is semi-uniform if

∀1 ≤ i ≤ m,Prx∼D[x ∈ Xi] =
1
m .

An (ε, µ)-bi-criteria distance approximation algorithm CompD(f, (ε, µ), d) for composition P
of additive properties, is an algorithm that takes f, ε, µ and d as input and outputs α̂ such that ∀f

1. ∀α s.t. f ∈ PD(d, α), it holds with probability at least 2
3 that α̂ ≤ α+ ε;

2. ∀α s.t. f /∈ PD((1 + µ)d, α), it holds with probability at least 2
3 that α̂ > α− ε.

Suppose we have a sequence of indices 1 ≤ i1 < i2 < · · · < il ≤ m denoted by i for short. Let

Di denote the conditional distribution of D on
l⋃

j=1
Xij . A (d, l, t, ε) distance approximation oracle

is an algorithm taking a length-l sequence i of indices and f ∈ {0, 1}X as input, and performing

CompDi
(factive, (ε, 0), d) on composition Pt. In other words, this algorithm performs distance

approximation on any given l-sub-union (l is typically small) of the m ground sets. For convenience

of use, we require the success probability of the oracle to be at least 11
12 . The proof of the following

lemma can be found in Appendix C.

Lemma 7 (Composition Lemma) Suppose P is the composition of m additive properties defined

above. Let D be a semi-uniform distribution. For parameters λ > 0, α ∈ [0, 1] and µ, ε ∈
(0, 1) taken as input, there exists l = O(1

εµ2 + 1
ε2
) such that we have an algorithm that performs

CompD(factive, (ε, µ), λm) by calling once a ((1 + µ
2)λl, l,

4λ
ε ,

ε
2) distance approximation oracle.

Suppose the query complexity and the unlabeled sample complexity of the oracle are q and N , re-

spectively. Then the query complexity and the unlabeled sample complexity of the algorithm are q
and O(Nm

l), respectively.

7. Tolerant Testing for Unions of d Intervals

Theorem 8 (main theorem) Suppose C is the class of functions f : R → {0, 1} satisfying f−1(1)
is a union of at most d intervals for d > 0. Given ε ∈ (0, 12), there is a tolerant tester for C in the

active testing model with respect to an arbitrary unknown distribution D on R with additive error ε
using O(1

ε6
log 1

ε) queries on O(d
ε2
log 1

ε) unlabeled examples.

We summarize the proof of Theorem 8 as follows and present the full proof in Appendix D.

Let’s first consider the case when D is the uniform distribution U over [0, 1], and then extend

to the arbitrary unknown distribution case. The tester first partitions [0, 1] into m pieces, X1 =
[0, 1

m], X2 = (1
m , 2

m], X3 = (2
m , 3

m], · · · , Xm = (m−1
m , 1]. ∀1 ≤ i ≤ m, ∀k ∈ N, we define Ck

i to

be the class of binary functions f on Xi such that f−1(1) is a union of at most k intervals. Note that

C0
i 6= ∅. Therefore, we can define P , the composition of m additive properties as in Section 6.

Note that for any d′ > 0 and any truncation t > 0, the concept class Pt(d′) has VC-dimension

at most 2d′. Therefore, according to the VC Theory for agnostic learning, we have a (d′, l, t, ε′)
distance approximation oracle using O(d′

ε′2
log 1

ε′) queries and unlabeled examples simply by em-

pirical risk minimization. By the Composition Lemma (Lemma 7), the tester calls the oracle once

10

ACTIVE TOLERANT TESTING

for d′ = (1 + µ
2)(1 +

ε
8)λl, l = O(1

ε′µ + 1
ε′2

), t =
4(1+ ε

8
)λ

ε′ , ε′ = ε
4 and implements an (ε2 , 1 + µ)-

bi-criteria distance approximation algorithm for P((1 + ε
8)λm) = P((1 + ε

8)d). We claim that this

algorithm is automatically a tolerant tester for the class of unions of d intervals within additive error

at most ε if we choose 1 + µ =
1+ ε

4

1+ ε
8

.

Note that the active tester for the uniform distribution over [0, 1] implies a query tester for

the same distribution with the same query complexity. As pointed out by Balcan et al. (2012),

the query tester for the uniform distribution over [0, 1] then implies a query tester for arbitrary

(known) distribution with the same query complexity. According to Lemma 5, the query tester for

an arbitrarily given distribution can be finally transformed to an active tester for arbitrary (unknown)

distribution with the same query complexity and unlabeled sample complexity O(d
ε2
log 1

ε).

8. Estimating the Performance of k-Nearest Neighbor Algorithms

In this section, we develop estimators for estimating the performance of k-Nearest Neighbor (k-NN)

algorithms (Fix and Hodges Jr, 1951; Fix and Hodges, 1989; Cover and Hart, 1967).

Let D be a distribution on a ground set X . Suppose every point x ∈ X has a (true) label f(x) ∈
{0, 1}. In addition, we have a distance metric d : X×X → R≥0 that is symmetric, nonnegative and

satisfies the triangle inequality. The k-Nearest Neighbor algorithm with soft predictions (k-NNsoft)

is given a pool S of unlabeled examples, sampled iid from D, and for any input x ∈ X , finds its

k nearest examples x1, x2, · · · , xk ∈ S with respect to the distance metric d and outputs f̂(x) =

1
k

k∑
i=1

f(xi) as an approximation of f(x). In this paper, we assume the k nearest examples are

calculated by an oracle M , i.e., when given x and S, M calculates the k nearest examples to x in

S. There may be ties when distances to x are compared and we assume M breaks ties according to

some (probably random) mechanism.

The k-Nearest Neighbor algorithm with hard predictions (k-NNhard) does the same thing as

k-NNsoft, except that f̂(x) is chosen as the majority vote I[1k

k∑
i=1

f(xi) > 0.5].3

For both algorithms, we use err1(x) = |f̂(x)−f(x)| to denote the L1 error on point x ∈ X . For

soft prediction, we will penalize the algorithm by taking the pth power of the L1 error for positive

integer p.

8.1. Estimating the Performance of k-NNsoft

Given a loss function loss(·), we can measure the performance of k-NNsoft by its expected loss

Ex[loss(err1(x))]. The expectation is over the random draw of x with respect to distribution D and

the randomness of the oracle M when ties occur. In this paper, we focus on the pth-power loss

Ex[(err1(x))
p] for positive integer p. Let Esoft

D (f, ε, S, k) denote the task of estimating the expected

loss of a k-NNsoft algorithm up to an additive error ε with success probability at least 2
3 . We consider

the estimation task in the active model, in which the estimator is only allowed to query labels of

examples in an unlabeled pool sampled iid from D. In addition to the given unlabeled pool S from

which k-NNsoft would learn, we allow the Esoft
D (factive, ε, S, k) estimator to sample fresh unlabeled

examples and query their labels. We assume the estimator has access to the oracle M .

3. I[·] is the indicator function of a statement, which takes value 1 if the statement is true and value 0 if the statement is

false.

11

ACTIVE TOLERANT TESTING

Theorem 9 Suppose we consider the pth-power loss for p ∈ N
∗. There is an estimator Esoft

D (factive, ε, S, k)
using O(p

ε2
) queries on N +O(1

ε2
) unlabeled examples when the unlabeled pool S has size N . The

underlying distribution D is assumed unknown to the estimator. Moreover, the estimator has success

probability at least 2
3 for any unlabeled pool S.

The proof of Theorem 9 is in Appendix E. We will show (Theorem 17 in Appendix G) that the

O(p
ε2
) query complexity is optimal.

8.2. Finding an Approximately-Best Choice of k

Based on the result in Section 8.1, we are able to construct an algorithm that approximately opti-

mizes the choice of k in the k-NNsoft algorithm.

Suppose we have active access to the true label f with respect to distribution D over ground

set X with distance metric d. Suppose the size of the unlabeled pool S is fixed to be N . We

use lossk to denote the expected loss of the k-NNsoft algorithm and consider how the k-NNsoft

algorithm performs with different values of k. We assume the oracle M uses the same tie-breaking

mechanism for different values of k. Specifically, given x and S, M arranges the examples in S
as x1, x2, · · · , xN so that ∀i, d(xi, x) ≤ d(xi+1, x). x1, x2, · · · , xk are taken by k-NNsoft as the k
nearest neighbors of x for any k ∈ {1, 2, · · · , N}.

We say k is ε-approximately-best, if ∀k′ ∈ {1, 2, · · · , N}, lossk′ ≥ lossk − ε. The following

theorem states that we can find an ε-approximately-best k using a small number of queries. The

proof of the theorem is in Appendix F.

Theorem 10 Suppose k-NNsoft algorithms with an unlabeled pool S of size N are measured

by pth-power loss for p ∈ N
∗. Suppose ε ∈ (0, 12). There is an algorithm that finds an ε-

approximately-best k w.p. at least 2
3 using O(p

2 logN
ε3

(log logN + log p + log 1
ε)) queries on N +

O(p logN
ε3

(log logN + log p+ log 1
ε)) unlabeled examples.

8.3. Estimating the Performance of k-NNhard

The performance of k-NNhard is naturally measured by its error rate Ex[err1(x)] and we use

Ehard
D (f, ε, S, k) to denote the corresponding estimation task of estimating the error rate of k-NNhard

up to an additive error ε with success probability at least 2
3 .

A trivial estimator achieving this goal using O(k
ε2
) queries on N + O(1

ε2
) unlabeled examples

is to use the empirical mean of err1(x) as an estimator of Ex[err1(x)]. This estimator is not satis-

factory because its query complexity grows with respect to k. In Appendix G, we show (Theorem

18) that this linear growth with respect to k can’t be eliminated.

Acknowledgments

This work was supported in part by the National Science Foundation under grants CCF-1525971

and CCF-1800317.

References

Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing. In 53rd

Annual Symposium on Foundations of Computer Science (FOCS), pages 21–30. IEEE, 2012.

12

ACTIVE TOLERANT TESTING

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on infor-

mation theory, 13(1):21–27, 1967.

Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean properties. In

Computational Complexity, 2005. Proceedings. Twentieth Annual IEEE Conference on, pages

135–140. IEEE, 2005.

Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonparametric discrimination:

consistency properties. International Statistical Review/Revue Internationale de Statistique, 57

(3):238–247, 1989.

Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric discrimination: consis-

tency properties. Technical report, California Univ Berkeley, 1951.

Oded Goldreich and Dana Ron. On sample-based testers. In Electronic Colloquium on Computa-

tional Complexity (ECCC), volume 20, pages 4–5, 2013.

Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to learning

and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

Shirley Halevy and Eyal Kushilevitz. Distribution-free property testing. In Approximation, Random-

ization, and Combinatorial Optimization.. Algorithms and Techniques, pages 302–317. Springer,

2003.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best arm identifica-

tion in multi-armed bandit models. Journal of Machine Learning Research, 17(1):1–42, 2016.

Michael Kearns and Dana Ron. Testing problems with sub-learning sample complexity. In Pro-

ceedings of the eleventh annual conference on Computational learning theory, pages 268–279.

ACM, 1998.

Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning geometric concepts via gaus-

sian surface area. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE

Symposium on, pages 541–550. IEEE, 2008.

Pravesh Kothari, Amir Nayyeri, Ryan O’Donnell, and Chenggang Wu. Testing surface area. In

Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages

1204–1214. SIAM, 2014.

Pravesh K Kothari and Roi Livni. Improper learning by refuting. In LIPIcs-Leibniz Interna-

tional Proceedings in Informatics, volume 94. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2018.

Joe Neeman. Testing surface area with arbitrary accuracy. In Proceedings of the forty-sixth annual

ACM symposium on Theory of computing, pages 393–397. ACM, 2014.

Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approxima-

tion. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

Leonard Pitt and Leslie G Valiant. Computational limitations on learning from examples. Journal

of the ACM (JACM), 35(4):965–984, 1988.

13

ACTIVE TOLERANT TESTING

Herbert Robbins. Some aspects of the sequential design of experiments. In Herbert Robbins Se-

lected Papers, pages 169–177. Springer, 1985.

Richard Miles Royall. A class of non-parametric estimates of a smooth regression function. PhD

thesis, Department of Statistics, Stanford University, 1966.

Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to

program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

Appendix A. Tolerant Passive Testing Implies Refutation

In this section, we consider a class C over domain X with VC-dimension d. We are going to build

a refutation algorithm (see Section 2.2 for definition) with margin ε ∈ (0, 12) for a distribution D by

calling a tolerant passive tester over arbitrary unknown distributions with sample complexity s as

oracle.

Lemma 11 There exist universal positive constants c1, c2 satisfying the following property. Assume

D satisfies that with probability at least 11
12 no point appears twice in an s′-sized i.i.d. sample from

D for s′ = dmax{ c1d
ε2

log 1
ε , c2s}e. Suppose there exists a tolerant passive tester A for C over

arbitrary unknown distribution with threshold α = 1
2 − 3ε

4 , margin ε
2 and sample complexity s.

Then there exists a refutation algorithm B for C over D with margin ε and sample complexity c2s.

Proof Algorithm B first obtains a c2s-sized sample S of example label pairs {(xi, yi)} and declares

failure if there exists yi 6= yj for xi = xj . If the algorithm does not declare a failure, it then treat

yi = f(xi) for some function f and calls A to distinguish whether f is α-close to C or f is (α+ ε
2)-

far from C using sample S. Here, the success probability of A is boosted to at least 11
12 by repeating

c2 times. B accepts if A accepts and B rejects if A rejects.

Now, we show the correctness of the algorithm. We first consider the case that every (xi, yi) is

i.i.d. from a distribution D′ with marginal on X being D and ∃g ∈ C,Pr(x′,y′)∼D[g(x
′) 6= y′] ≤

1
2 − ε. We enlarge S to an s′-sized sample S′. Equivalently, we can imagine S′ is chosen i.i.d. from

D′ first and S is an i.i.d. sample from the uniform distribution U over S′. With probability at least 11
12 ,

all the xi in S′ are distinct. For every x ∈ X , we define error(x) = Pr(x′,y′)∼D′ [g(x′) 6= y′|x′ = x]

and we have Ex∼D[error(x)] ≤ 1
2 − ε. According to the Chernoff Bound, with probability at least

11
12 , Ex∼U [error(x)] ≤ 1

2 − 7ε
8 . By the Union Bound, with probability at least 5

6 , all xi in S′ are

distinct and Ex∼U [error(x)] ≤ 1
2− 7ε

8 . Conditioned on that, every yi is independent from others and

thus by the Chernoff Bound, with probability at least 11
12 we have Pr(x,y)∼U [g(x) 6= y] ≤ 1

2 − 3ε
4 . If

we unwrap the conditional probability of at least 5
6 , we know with probability at least 5

6 · 11
12 that

1. all xi in S′ are distinct;

2. Pr(x,y)∼U [g(x) 6= y] ≤ α.

Now, if we sample S i.i.d. from U and feed it to A, we know A accepts with probability at least 11
12 .

Therefore, B accepts with probability at least 5
6 · 11

12 · 11
12 ≥ 2

3 .

Next, we consider the case that every yi is i.i.d. uniformly chosen from {0, 1}. Again, we

enlarge S to an s′-sized sample S′ and imagine S′ is chosen i.i.d. from D′ first and S is an i.i.d.

14

ACTIVE TOLERANT TESTING

sample from the uniform distribution U over S′. With probability at least 11
12 , all the xi in S′ are

distinct. Conditioned on that, by the Chernoff Bound, for any function g, we have Pr(x,y)∼U [g(x) 6=
y] ≥ 1

2 − ε
4 = α+ ε

2 with probability at least 1− e−ε2s′/8 = 1− εc
′d/8 for some c′ ≥ c1 satisfying

s′ = c′d
ε2

log 1
ε . By Sauer’s Lemma, the number of different g over the chosen xi in S′ is at most

(es
′

d)d = (c
′e
ε2

log 1
ε)

d. Note that when c1 is sufficiently large, we always have εc
′d/8 · (c′e

ε2
log 1

ε)
d ≤

1
6 . Therefore, by the Union Bound, with probability at least 5

6 , we have ∀g ∈ C,Pr(x,y)∼U [g(x) 6=
y] ≥ α + ε

2 . If we unwrap the conditional probability of at least 11
12 , we know with probability at

least 11
12 · 5

6 that

1. all xi in S′ are distinct;

2. ∀g ∈ C,Pr(x,y)∼U [g(x) 6= y] ≥ α+ ε
2 .

Again, if we sample S i.i.d. from U and feed it to A, we know A rejects with probability at least 11
12 .

Therefore, B rejects with probability at least 5
6 · 11

12 · 11
12 ≥ 2

3 .

Appendix B. Distance Approximation for Disjoint Unions of Properties

In this section, we extend the theorem of Balcan et al. (2012) that disjoint unions of testable prop-

erties are testable from non-tolerant testing to tolerant testing.

We first introduce the definition of disjoint unions of properties in (Balcan et al., 2012). Suppose

the ground set X is partitioned as a disjoint union
m⋃
i=1

Xi. On every Xi, there is a property (concept

class) Ci 6= ∅. The disjoint union of these properties is defined to be C = {f ∈ {0, 1}X : ∀1 ≤ i ≤
m, f |Xi

∈ Ci}.

Let D be a distribution over X . Suppose the conditional distribution of D on Xi is denoted by

Di and the probability Prx∼D[x ∈ Xi] is denoted by pi.

Theorem 12 Suppose ε ∈ (0, 12). Suppose for every 1 ≤ i ≤ m, there is an active tolerant tester A
for Ci over Di with additive error ε

2 using at most q queries on N unlabeled examples. Then, there

is an active tolerant tester B for C over D with additive error ε using at most O(q
ε2
log 1

ε) queries

on O(mN
ε log 1

ε) unlabeled examples. If tester A can perform on unknown distributions, then tester

B can also perform on unknown distributions, though we need extra O(1
ε2
) unlabeled examples.

Proof Tester B is constructed as follows. The tester chooses s = O(1
ε2
), receives an unlabeled

pool of size O(mN
ε log s) and independently chooses s indices i1, i2, · · · , is from {1, 2, · · · ,m}

according to distribution {pi}1≤i≤m. This can be achieved by looking at on which Xi’s the extra

s unlabeled examples are, when the distribution D is unknown. Then for each 1 ≤ j ≤ s, if there

are enough (O(N log s)) unlabeled examples lying in Xij , the tester repeats A for O(log s) times

to calculate an estimator d̂istij of the distance from f to C on Dij up to an additive error ε
2 with

success probability at least 1 − 1
9s ;4 otherwise, define d̂istij = 0. The final output of tester B is

1
s ·

s∑
j=1

d̂istij .

4. Repeat tester A O(log s) times and take the median to boost its success probability to at least 1− 1

9s
.

15

ACTIVE TOLERANT TESTING

To prove the correctness of the above tester, we first define disti := inf
g∈C

distDi
(f, g) and dist :=

inf
g∈C

distD(f, g). Note that dist =
m∑
i=1

pidisti.

For every 1 ≤ i ≤ m, we further define dist′i =

{
disti, if pi ≥ ε

4m
0, if pi <

ε
4m

and dist′′i =

{
disti, if pi ≥ ε

4m
1, if pi <

ε
4m

.

Then dist− ε
4 ≤

m∑
i=1

pidist
′ ≤

m∑
i=1

pidist
′′ ≤ dist+ ε

4 . By the Chernoff Bound, s = O(1
ε2
) is enough

to make sure with probability at least 1− 1
9 that dist− ε

2 < 1
s

s∑
j=1

dist′ij ≤ 1
s

s∑
j=1

dist′′ij < dist + ε
2 .

Note that the unlabeled pool has size O(mN
ε log s), which is enough to make sure that with

probability at least 1 − 1
9 , for every ij with pij ≥ ε

4m , there are enough (O(N log s)) unlabeled

examples lying in Xij . Therefore, with probability at least (1 − 1
9)(1 − s · 1

9s) ≥ 1 − 2
9 , for all ij

such that pij ≥ p
4m , it holds that |d̂istij − distij | ≤ ε

2 .

Finally, by the Union Bound, we know with probability at least 1 − 1
3 , it holds that dist − ε <

1
s

s∑
j=1

dist′ij − ε
2 ≤ 1

s

s∑
j=1

d̂istij ≤ 1
s

s∑
j=1

dist′′ij +
ε
2 < dist + ε.

Appendix C. Proof of Lemma 7

Before proving Lemma 7, we first show a simple claim about compositions with truncation.

Claim 13 Suppose the distribution D is semi-uniform. We have Pt
D(d, α) ⊆ PD(d, α) ⊆ Pt

D(d, α+
d
tm).

Proof Pt
D(d, α) ⊆ PD(d, α) is obvious. To see PD(d, α) ⊆ Pt

D(d, α + d
tm), we note that for any

g ∈ P(d), for each i such that ki > t, substituting a function in C0
i for g|Xi

causes at most a 1
m

increase in the distance from f ∈ PD(d, α) to g. An easy observation that |{i : ki > t}| ≤ d
t given

m∑
i=1

ki ≤ d completes the proof.

Proof (of Lemma 7) The algorithm first picks indices 1 ≤ i1 < i2 < · · · il ≤ m uniformly at

random for l = O(1
εµ2 +

1
ε2
). Then the algorithm asks for O(Nm

l) unlabeled examples to make sure

with probability at least 11
12 , there are at least N examples lying in

l⋃
j=1

Xij . These examples can be

treated as drawn independently at random according to Di, where i = (i1, i2, · · · , il). Finally, the

algorithm calls the oracle to approximate the distance from f to Pt((1+ µ
2)λl) truncated by t = 4λ

ε
on distribution Di up to an additive error ε

2 using these unlabeled examples and outputs what the

oracle outputs.

The correctness of the algorithm follows from the following two lemmas (with proofs in the

appendices) and the Union Bound.

Lemma 14 Suppose t = 4λ
m . If f ∈ PD(λm,α), then choosing l = O(1

εµ2 +
1
ε2
) is enough to make

sure that with probability at least 5
6 , f ∈ Pt

Di
((1 + µ

2)λl, α+ ε
2).

16

ACTIVE TOLERANT TESTING

Lemma 15 Suppose t = 4λ
m . If f /∈ PD((1 + µ)λm,α), then choosing l = O(1

εµ2 +
1
ε2
) is enough

to make sure that with probability at least 5
6 , f /∈ Pt

Di
((1 + µ

2)λl, α− ε
2).

Proof (of Lemma 14)

By the choice of truncation t = 4λ
ε , according to Claim 13, we know f ∈ Pt

D(λm,α + ε
4).

Suppose distD(f, g) ≤ α + ε
4 for some g ∈ Pt(λm). According to the Multiplicative Chernoff

Bound for sampling without replacement, choosing l = O(1
εµ2) is enough to make sure that with

probability at least 11
12 , ∃g′ s.t. g′ ∈ Pt((1 + µ

2)λl) and distDi
(g, g′) = 0.5 According to the

Chernoff Bound for sampling without replacement, choosing l = O(1
ε2
) is enough to make sure that

with probability at least 11
12 , distDi

(f, g) ≤ α+ ε
2 . By the Union Bound, these two events happen at

the same time with probability at least 5
6 , and in this case, f ∈ Pt

Di
((1 + µ

2)λl, α+ ε
2).

Proof (of Lemma 15) According to Claim 13, we know f /∈ Pt
D((1 + µ)λm,α). Therefore, by

definition, there exists g ∈ Pt((1 + µ)λm) with the following two properties:6

1. distD(f, g) > α;

2. ∀g′ ∈ Pt((1 + µ)λm), distD(f, g′) > distD(f, g)− ε
4 · l

m .

Suppose g|Xi
∈ Cki

i for ki ≤ t = 4λ
ε satisfying k :=

m∑
i=1

ki ≤ (1 + µ)λm. We enlarge ki to

k′i ∈ [ki, t] to make sure that k′ :=
m∑
i=1

k′i = (1 + µ)λm.7 According to the Multiplicative Chernoff

Bound for sampling without replacement, choosing l = O(1
εµ2) is enough to make sure that with

probability at least 11
12 ,

l∑
j=1

k′ij ≥ (1 + µ
2)λl.

Now suppose it’s the case that
l∑

j=1
k′ij ≥ (1 + µ

2)λl. Then, according to the second property of

g, we know

∀g′ ∈ Pt((1 +
µ

2
)λl), distDi

(f, g′) > distDi
(f, g)− ε

4
.

Otherwise, we can swap g′ for g on
l⋃

j=1
Xij causing a violation of the second property of g.

Finally, according to the Chernoff Bound for sampling without replacement, choosing l =
O(1

ε2
) is enough to make sure that with probability at least 11

12 , distDi
(f, g) > α− ε

4 . Therefore, by

the Union Bound, with probability at least 5
6 ,

∀g′ ∈ Pt((1 +
µ

2
)λl), distDi

(f, g′) > distDi
(f, g)− ε

4
> α− ε

2
,

a completion of the proof.

5. g′ is chosen such that g′|Xi
∈ C0

i for all i /∈ {i1, i2, · · · , il} and g′|Xi
= g|Xi

for all i ∈ {i1, i2, · · · , il}. The fact

that the ki’s of g are bounded between 0 and t = 4λ
ε

allows us to use the Multiplicative Chernoff Bound.

6. E.g., choose g to be the closest or approximately-closest function in the class to f . Note that Pt((1 + µ)λm) can’t

be empty, because Pt((1 + µ)λm) ⊇ Pt(0) = P(0) 6= ∅.

7. k′

i doesn’t have to be an integer. Also note that mt = 4λ
ε
·m > 4λm > (1 + µ)λm.

17

ACTIVE TOLERANT TESTING

Appendix D. Proof of Theorem 8

Proof (of Theorem 8) We use the definitions of I(d) and ID(d, α) in Section 4.1. As pointed out

in Section 7, we only need to consider D as the uniform distribution over [0, 1] and we omit it for

simplicity.

If d ≤ 8
ε , we can simply do agnostic learning using O(d

ε2
log 1

ε) = O(1
ε3
log 1

ε) queries and

unlabeled examples. So in the rest of the proof, we assume d > 8
ε . We pick the largest positive

integer m satisfying m ≤ εd
8 and we define λ = d

m = O(1ε).
Since the data distribution is assumed uniform on [0, 1], we can assume without loss of gen-

erality that our ground set X is [0, 1] and f ∈ {0, 1}X . We evenly cut X into m pieces: X1 =
[0, 1

m], X2 = (1
m , 2

m], X3 = (2
m , 3

m], · · · , Xm = (m−1
m , 1]. ∀1 ≤ i ≤ m, ∀k ∈ N, we define Ck

i to

be the class of binary functions f on Xi such that f−1(1) is a union of at most k intervals. Note that

C0
i 6= ∅. Therefore, we can define P , the composition of m additive properties as in Section 6.

Note that for any d′ > 0 and any truncation t > 0, the concept class Pt(d′) has VC-dimension

at most 2d′. Therefore, according to the VC Theory for agnostic learning, for any µ ∈ (0, 12), ε
′ =

ε
4 , l = O(1

ε′µ2 + 1
ε′2

), we have a ((1 + µ
2)(1 + ε

8)λl, l,
2(1+ ε

8
)λ

ε′ , ε′) distance approximation oracle

using O(
(1+µ

2
)(1+ ε

8
)λl

ε′2
log 1

ε′) = O(l
ε′2ε

log 1
ε′) = O((1

ε′3εµ2 + 1
ε′4ε

) log 1
ε′) = O((1

ε4µ2 + 1
ε5
) log 1

ε)
queries and unlabeled examples simply by empirical risk minimization. By the Composition Lemma

(Lemma 7), we have an algorithm that outputs α̂ such that ∀f ,

1. ∀α s.t. f ∈ P((1+ ε
8)λm,α), it holds with probability at least 2

3 that α̂ ≤ α+2ε′(= α+ ε
2);

2. ∀α s.t. f /∈ P((1 + µ)(1 + ε
8)λm,α), it holds with probability at least 2

3 that α̂ > α− 2ε′(=
α− ε

2).

Choose 1 + µ =
1+ ε

4

1+ ε
8

and note that λm = d, I(d, α) ⊆ P(d + m,α) ⊆ P((1 + ε
8)d, α) and

P((1 + ε
4)d, α) ⊆ I((1 + ε

4)d, α), we have ∀f ,

1. ∀α s.t. f ∈ I(d, α), it holds with probability at least 2
3 that α̂ ≤ α+ ε

2 ;

2. ∀α s.t. f /∈ I((1 + ε
4)d, α), it holds with probability at least 2

3 that α̂ > α− ε
2 .

This is an (ε2 , 1 +
ε
4)-bi-criteria tester for unions of d intervals. According to the Composition

Lemma (Lemma 7), the query complexity and the unlabeled sample complexity of the algorithm

are O((1
ε4µ2 + 1

ε5
) log 1

ε) = O(1
ε6
log 1

ε) and O((l
ε′2ε

log 1
ε′) · m

l) = O(d
ε2
log 1

ε).
Finally, note that Balcan et al. (2012) revealed a basic property of unions of d intervals that

I((1 + ε
4)d) ⊆ I(d, ε

2), implying I((1 + ε
4)d, α) ⊆ I(d, α+ ε

2), which completes the proof.

Appendix E. Proof of Theorem 9

Before proving the theorem, we first show a simple estimator that works for any loss function loss(·)
bounded in [0, 1] with L-Lipschitz property8 using O(L

2

ε4
· log 1

ε) queries on N + O(1
ε2
) unlabeled

examples. The estimator runs for O(1
ε2
) iterations and in each ith iteration, the estimator samples a

8. We say loss(·) has L-Lipschitz property if ∀x1, x2 ∈ [0, 1], |loss(x1)− loss(x2)| ≤ L|x1 − x2|.

18

ACTIVE TOLERANT TESTING

fresh unlabeled example x and then queries the labels of w = O(L
2

ε2
log 1

ε) examples x1, x2, · · · , xw
sampled independently at random uniformly from the k nearest neighbors of x in S. The estimator

for this iteration is Ei = loss(| 1w
w∑

j=1
f(xj)−f(x)|). The final output of the estimator is the average

of all Ei’s for all iterations i.
We prove Theorem 9 by slightly modifying the above estimator’s each iteration for pth-power

loss. Instead of looking at the labels of w examples, we only need to look at p labels of x1, x2, · · · , xp,

still sampled independently at random uniformly from the k nearest neighbors of x in S. In this case,

Ei is defined to be
p∏

j=1
|f(xj)− f(x)|. The final output of the estimator is still the average of Ei’s.

Proof (of Theorem 9) We use ej to denote |f(xj) − f(x)|. To show the above estimator works,

we first look at the value we want to estimate: Ex[(err1(x))
p] = Ex[|Ex1

[f(x1) − f(x)]|p] =
Ex[Ex1

[|f(x1) − f(x)|]p] = Ex[(Ex1
[e1])

p], where x1 is sampled uniformly from the k nearest

neighbors of x in T . Here, we can move the absolute value | · | inside because f(x1) − f(x) is

either always non-negative (when f(x) = 0) or always non-positive (when f(x) = 1). Note that

x1, x2, · · · , xp are iid, so we know Ex[(err1(x))
p] = Ex[(Ex1

[e1])
p] = Ex[Ex1,x2,··· ,xp [e1e2 · · · ep]] =

Ex,x1,x2,··· ,xp [
p∏

j=1
|f(xj)−f(x)|]. According to the Chernoff Bound, the empirical mean of

p∏
j=1

|f(xj)−

f(x)| over O(1
ε2
) iid trials approximates the value Ex[(err1(x))

p] within additive error ε with prob-

ability at least 2
3 , which completes the proof.

Theorem 9 also holds naturally for Weighted Nearest Neighbor algorithms (Royall, 1966) with

soft predictions, in which f̂(x) is a weighted average of f(x′) for all x′ ∈ S where the weights

depend on the distances d(x′, x), simply by sampling x1, x2, · · · , xp iid from S according to the

weights.

Appendix F. Proof of Theorem 10

Lemma 16 Suppose k1 ≤ k2 and the loss function loss(·) is L-Lipschitz. Then, |lossk1 − lossk2 | ≤
L · (1− k1

k2
).

Proof When the test point x is chosen, we use x1, x2, · · · , xk2 to denote the closest k2 points

to x in S, arranged in non-decreasing order of their distances to x. Each xi might be random

because ties might be broken randomly. We use ei to denote |f(xi) − f(x)|. Note that we have

19

ACTIVE TOLERANT TESTING

lossk1 = Ex,x1,x2,··· ,xk1
[loss(1

k1

k1∑
i=1

ei)] and lossk2 = Ex,x1,x2,··· ,xk2
[loss(1

k2

k2∑
i=1

ei)]. Therefore,

|lossk1 − lossk2 |

≤Ex,x1,x2,··· ,xk2
[|loss(1

k1

k1∑

i=1

ei)− loss(
1

k2

k2∑

i=1

ei)|]

≤L · Ex,x1,x2,··· ,xk2
[| 1
k1

k1∑

i=1

ei −
1

k2

k2∑

i=1

ei|]

=L · Ex,x1,x2,··· ,xk2
[|(1

k1
− 1

k2
)

k1∑

i=1

ei −
1

k2

k2∑

i=k1+1

ei|]

≤L · Ex,x1,x2,··· ,xk2
[max{(1

k1
− 1

k2
)

k1∑

i=1

ei,
1

k2

k2∑

i=k1+1

ei}]

≤L ·max{(1
k1

− 1

k2
) · k1,

1

k2
· (k2 − k1)}

=L · (1− k1
k2

)

(2)

Proof (of Theorem 10) If we apply Lemma 16 to pth-power loss, which is p-Lipschitz, we know

for any 1 ≤ k2
k1

≤ p
p−ε , it holds that |lossk1 − lossk2 | ≤ ε. If we define t = blog p

p− ε
3

Nc, k2i =
b(p

p− ε
3

)ic, k2i+1 = d(p
p− ε

3

)ie for i = 0, 1, 2, · · · , t, then we know ∃0 ≤ i ≤ 2t + 1 such that ki is
ε
3 -approximately-best. By Theorem 9, we can estimate losski for every 0 ≤ i ≤ 2t + 1 up to an

additive error ε
3 using O(pt log t

ε2
) queries on N + O(t log t

ε2
) unlabeled examples.9 The ki yielding

the smallest approximation of losski is ε-approximately-best. Note that t = O(p logNε), so the

query complexity is O(p
2 logN
ε3

(log logN + log p+ log 1
ε)) and the unlabeled sample complexity is

N +O(p logN
ε3

(log logN + log p+ log 1
ε)).

Appendix G. Lower Bound Results for Estimating k-Nearest Neighbor Algorithms

Our lower bound results in this section are stronger in the sense that the estimator has query access

to f , knows the distribution to be the uniform distribution U over a finite ground set X and is only

supposed to work on some fixed tie-breaking mechanism. Moreover, we don’t require the estimator

to have success probability at least 2
3 for any S; instead, the success probability is calculated over

the random draw of S and the internal randomness of the estimator.

Theorem 17 Let U be the uniform distribution over a finite ground set X . There exists a positive

constant c such that for any fixed p ≥ 1, ε ∈ (0, 1
6
√
e
) and oracle M using any fixed tie-breaking

mechanism, Esoft
U (fquery, ε, S, k) for pth-power loss requires at least c · p

ε2
queries in the worst case

over all finite metric spaces (X, d).

9. Repeat the estimator O(log t) times and take the median to boost its success probability to 1−O(1
t
).

20

ACTIVE TOLERANT TESTING

Theorem 18 There exists a positive constant c such that for any fixed k ∈ N
∗, ε ∈ (0, 14) and

oracle M using any fixed tie-breaking mechanism, Ehard
U (fquery, ε, S, k) requires at least c · k

ε log 1
ε

queries in the worst case.

Before we prove the above theorems in Sections G.2 and G.3, we first show some related def-

initions and results in the stochastic multi-armed bandit setting that will be useful in the proofs of

the theorems.

G.1. Counting and Approximating the Number of Good Arms

To show query complexity lower bound results for estimating the performance of k-Nearest Neigh-

bor algorithms, we show reductions from two related problems in the stochastic multi-armed bandit

setting: counting the number of good arms (CGA) and approximating the number of good arms

(AGA).

The setting of stochastic multi-armed bandit problems (Robbins, 1985) is as follows. The al-

gorithm is given n arms, denoted by A = (A1, A2, · · · , An). Each arm is a distribution over R

unknown to the algorithm. The algorithm adaptively accesses these arms to receive values indepen-

dently sampled according to the distributions.

In this paper, we only consider arms with Bernoulli distributions. When given γ ∈ (0, 12], we

define good arms to be arms with mean at least 1
2 + γ and bad arms to be arms with mean at most

1
2 − γ.

The problem of CGA(A, γ) is, when given A in which every Ai is either good or bad, to output

the number of good arms among the given n arms. The algorithm should output the correct answer

with probability at least 2
3 .

The problem of AGA(A, γ, ε) is a similar task to CGA(A, γ), except that we only need to

approximate the correct answer up to an additive error εn.

The following lemma is developed by Kaufmann et al. (2016) as a useful tool for proving lower

bounds in the stochastic multi-armed bandit setting.

Lemma 19 (Change of measure) Suppose A = (A1, A2, · · · , An) and A
′ = (A′

1, A
′
2, · · · , A′

n)
are two sequences of arms. Suppose algorithm A takes n arms as input. Suppose E is an event in

the σ-field FT for some almost-surely finite stopping time T with respect to the filtration {Ft}t≥0.

Suppose τi is the number of queries on Ai made by the algorithm. Then,

n∑

i=1

EA,A[τi]KL(Ai, A
′
i) ≥ D(Pr

A,A
[E], Pr

A,A′

[E]).10

A simple special case (n = 1) of the lemma is that to distinguish a coin with mean µ1 from a

coin with mean µ2 with success probability at least 1 − δ, an algorithm needs at least
D(1−δ,δ)
D(µ1,µ2)

=

Ω(1
D(µ1,µ2)

log 1
δ) queries in expectation for µ1 6= µ2 and 0 < δ ≤ 2

5 .

10. KL(X,Y) denotes the Kullback-Leibler divergence from distribution Y to distribution X . If the two distributions

X and Y are Bernoulli with means x and y, their Kullback-Leibler divergence is the relative entropy D(x, y) =
x log x

y
+ (1− x) log 1−x

1−y
.

21

ACTIVE TOLERANT TESTING

G.2. Proof of Theorem 17

Proof (of Theorem 17) We define ε′ = 6
√
eε. Note that D(1−ε′

2p , 1
2p) = O(ε

′2

p) for p ≥ 1 and ε′ ∈
(0, 1). Therefore, we only need to show that a Esoft

U (fquery, ε, S, k) estimator implies an algorithm

that distinguishes a coin of mean 1−ε′

2p from a coin of mean 1
2p with success probability at least 3

5
using at most the same number of queries. We construct the algorithm in the following way.

The algorithm first constructs a k-NNsoft instance with ground set X and distance metric d. We

first choose k = d c′p2
ε2

e, b = d6ε e, N = dc′′ · (1 + b)ke and m = d c′′′N2

1+b e ≥ 6N
(1+b)ε . Here, c′, c′′ and

c′′′ are sufficiently large constants. X consists of a star with m centers and bm leaves. Each center

C has a distance dC ∈ (1, 2) to every leaf in the star and different centers have different values of

dC to avoid ties. The distance between each pair of leaves is 2 and the distance between each pair

of centers is 1.

The algorithm then simulates the estimator Esoft
U (fquery, ε, S, k) on this k-NNsoft instance with-

out knowing f beforehand. Every time the estimator queries the label of a new example, it simulates

the result as follows. If the example being queried is a leaf, the result is 1. If the example being

queried is a center, the result is obtained to be the same result of an independent toss of the coin we

want to distinguish. Finally, if the output of Esoft
U (fquery, ε, S, k) is above 1

2 [(1− 1
2p)

p+(1− 1−ε′

2p)p],

the algorithm then guesses the coin to have mean 1−ε′

2p . Otherwise, the algorithm guesses the coin

to have mean 1
2p .

Now we show that the above algorithm correctly distinguishes the coins with success probability

at least 3
5 . The process of the algorithm, by interchanging the randomness of the labels (coin tosses)

and the internal randomness of the Esoft
U (fquery, ε, S, k) estimator, can be viewed in the way that the

true labels f are determined before we run the Esoft
U (fquery, ε, S, k) estimator. The leaves all have

label 1 and each center is independently labeled 0 or 1 according to the result of a toss of the coin.

After the labels f are decided, the Esoft
U (fquery, ε, S, k) estimator is then simulated to approximate

the pth-power loss of the k-NNsoft instance up to additive error ε with success probability at least 2
3 .

Suppose the coin to be distinguished has mean µ. Note that the total number of points in the

ground set is (1+b)m = Ω(N2), therefore we can make sure with probability at least 1− 1
40 that no

two unlabeled examples lie on the same point. Because each random example has probability 1
1+b

to lie in the centers and N ≥ c′′ ·(1+b)k, therefore by choosing a sufficiently large c′′, we can make

sure with probability at least 1− 1
40 that in the unlabeled sample pool, there are at least k examples

lying at the centers. These two events happen at the same time with probability at least 1 − 1
20 by

the Union Bound. Conditioned on these two events happening, by a sufficiently large choice of c′,
among those unlabeled examples lying at the centers, we can make sure that with probability at least

1− 1
20 , the average of the labels of the k examples with smallest dC is contained in (µ− ε

6p , µ+
ε
6p).

All these events happen at the same time with probability at least (1 − 1
20)

2 ≥ 1 − 1
10 , and in this

case, every leaf outside the unlabeled pool S has L1 error in (1 − µ − ε
6p , 1 − µ + ε

6p) and thus

has pth-power loss in ((1 − µ)p − ε
6 , (1 − µ)p + ε

6). The total number of leaves in the unlabeled

pool S and centers is upper bounded by the size N of the pool plus m, which contributes only a
N+m
(b+1)m ≤ ε

3 fraction of the total number of points. Therefore, with probability at least 1 − 1
10 , the

average pth-power loss of all points is contained in ((1− µ)p − ε
2 , (1− µ)p + ε

2).

Note that (1− 1−ε′

2p)p − (1− 1
2p)

p > 3ε, therefore the algorithm correctly guesses the mean of

the coin with probability at least (1− 1
10) · 2

3 = 3
5 .

22

ACTIVE TOLERANT TESTING

G.3. Proof of Theorem 18

Lemma 20 There exists a positive constant c such that for any fixed k ∈ N
∗, ε ∈ (0, 14) and oracle

M using any fixed tie-breaking mechanism, if there is a Ehard
U (fquery, ε, S, k) estimator using at

most q queries in the worst case, then there is an AGA(A, γ, 2ε) algorithm using at most O(q)

queries in the worst case where γ = min

{
1
2 , c ·

√
log 1

ε

k

}
.

The above lemma shows that a query complexity lower bound for AGA(A, γ, ε) can imply

a query complexity lower bound for Ehard
U (fquery, ε, S, k). AGA(A, γ, ε) has a simple algorithm

requiring O(1
γ2ε2

log 1
ε) queries as follows. The algorithm randomly picks O(1

ε2
) arms. For each of

the picked arms, the algorithm queries it O(1
γ2 log

1
ε) times and thinks of it as “good” if more than

half of the results are positive and “bad” otherwise. The algorithm outputs the fraction of “good”

arms among the picked arms.

If we assume the simple O(1
γ2ε2

log 1
ε) query complexity for AGA is not improvable, then

Lemma 20 implies that the O(k
ε2
) query complexity for Ehard is also not improvable. In other

words, if for every sequences εn → 0 and γn → 0, there exists a positive constant c such that

AGA(A, εi, γi) needs at least c · 1
γ2
i ε

2
i

log 1
εi

queries in the worst case, then according to Lemma

20, we know for any sequences {kn}, {εn} such that εn → 0, kn
log 1

εn

→ ∞, there exists a positive

constant c′ such that the estimator Ehard
U (fquery, ε, S, k) for k-NNhard algorithms needs at least c′ · ki

ε2i
queries in the worst case.

Proof (of Lemma 20) Since the success probability can be boosted by repetition, we only show an

AGA(A, γ, 2ε) algorithm with success probability at least 3
5 . Given any instance of AGA(A, γ, 2ε)

with total number of arms equal to n, the algorithm constructs a ground set X and the distance

metric d on it to form a k-NNhard instance in the following way. We first choose b = d3ε e, N =

dc′ · (1 + b)n(k + log 1
ε)e and m = d c′′N2

(1+b)ne ≥ 3N
(1+b)nε . Here, c′ and c′′ are sufficiently large

constants. X consists of n identical stars, each corresponds to an arm, with the distances between

stars to be very large. Each star consists of m centers and bm leaves. Each center C has a distance

dC ∈ (1, 2) to every leaf in the same star and different centers have different values of dC to avoid

ties. The distance between each pair of leaves in the same star is 2 and the distance between each

pair of centers in the same star is 1.

The algorithm then simulates the estimator Ehard
U (fquery, ε, S, k) on this k-NNhard instance

without knowing f beforehand. Every time the estimator queries the label of a new example, it

simulates the result as follows. If the example being queried is a leaf, the result is 0. If the example

being queried is a center, the result is obtained to be the same result of an independent query to

the corresponding arm. Finally, the algorithm outputs α̂n when the Ehard
U (fquery, ε, S, k) estimator

outputs α.

Now we show that the above is an AGA(A, γ, 2ε) algorithm with success probability at least 3
5 .

The process of the algorithm, by interchanging the randomness of the labels (arms) and the internal

randomness of the Ehard
U (fquery, ε, S, k) estimator, can be viewed in the way that the true labels f are

determined before we run the Ehard
U (fquery, ε, S, k) estimator. The leaves all have labels 0 and each

center is independently labeled 0 or 1 according to the result of a query to the corresponding arm.

After the labels f are decided, the Ehard
U (fquery, ε, S, k) estimator is then simulated to approximate

the error rate of the k-NNhard instance up to additive error ε with success probability at least 2
3 .

23

ACTIVE TOLERANT TESTING

Let’s say a star is good (bad) if it corresponds to a good (bad) arm. Suppose there are ξn good

arms, and thus ξn good stars. Note that there are (1 + b)mn = Ω(N2) points in the ground set, we

can make sure with probability at least 1− 1
20 that no two unlabeled examples lie on the same point,

on which the following discussion is conditioned. Let’s first fix a star R whose corresponding arm

has mean µ. Because each random example has probability 1
(1+b)n to lie in the centers of R and

N ≥ c′ · (1 + b)n(k + log 1
ε), therefore by choosing a sufficiently large c′, we can make sure with

probability at most
ε

120

1− 1
20

that in the unlabeled sample pool, there are less than k examples lying at the

centers of R. Therefore, by a sufficiently large choice of c, among those unlabeled examples lying

at the centers of R, we can make sure that with probability at least (1−
ε

120

1− 1
20

)(1− ε
200) ≥ 1−

ε
60

1− 1
20

,

the average of the labels of the k examples with smallest dC is contained in (µ − γ, µ + γ), or R

is satisfied. By Markov’s Inequality, with probability at least 1 −
1
20

1− 1
20

, or 1 − 1
10 if we unwrap

the conditional probability of 1 − 1
20 , at least a (1 − ε

3) fraction of all the n stars are satisfied. In

a satisfied star, any leaf that is not in the unlabeled pool has L1 error 1 if the star is good and L1

error 0 if the star is bad. Note that there are at most N leaves in the unlabeled pool, contributing

at most an N
(1+b)mn ≤ ε

3 fraction of the total number of points. Also there are only mn centers in

total, contributing at most an mn
(1+b)mn ≤ ε

3 fraction of the total number of points. Therefore, with

probability at least 1− 1
10 , the average error of all points is contained in [ξ− ε, ξ+ ε], which implies

that with probability at least (1− 1
10) · 2

3 = 3
5 , α̂ ∈ [ξ − 2ε, ξ + 2ε].

Before proving Theorem 18, we first show a query complexity lower bound for CGA.

Lemma 21 There exists a universal constant c such that for any fixed γ ∈ (0, 12] and n ∈ N
∗,

CGA(A, γ) requires at least c · n
γ2 queries in the worst case, where n is the number of arms in A.

Proof (of Lemma 21) We use G to denote the good arm with mean 1
2 + γ and B to denote the bad

arm with mean 1
2 −γ. Let’s first consider the case where each of the n arms is independently chosen

to be G or B uniformly at random. Note that we require the probability of success to be at least 2
3 ,

so CGA(A, γ) can’t always make less than n queries because the probability of success is at most
1
2 in this case. Therefore, n is an obvious query complexity lower bound and in the rest of the proof

we can assume γ < 1
4 .

We claim a stronger fact that for any 0 ≤ q ≤ n and any instance consisting of q G’s and n− q
B’s, CGA(A, γ) needs at least c · 1

γ2 queries on every of the n arms. By symmetry between “good”

and “bad”, we only show that every G arm needs to be queried at least c · 1
γ2 times. The reason

is as follows. Suppose A = (A1, A2, · · · , An) in which Ai = G for 1 ≤ i ≤ q and Ai = B
otherwise. We define A

′ = (A′
1, A

′
2, · · · , A′

n) in which A′
i = G for 1 ≤ i ≤ p − 1 and A′

i = B
otherwise. The only difference between A and A

′ is that Ap = G while A′
p = B. We use E to

denote the event that CGA(A, γ) outputs p. By Lemma 19 and KL(G,B) = O(γ2), we know

E[τp] ·O(γ2) ≥ D(23 ,
1
3) = Ω(1) and thus E[τp] = Ω(1

γ2). For similar reasons, we can show for all

1 ≤ i ≤ p that E[τi] = Ω(1
γ2), which completes the proof.

Proof (of Theorem 18) Lemma 21 immediately implies the existence of a positive constant c′ such

that for any fixed ε ∈ (0, 12) and γ ∈ (0, 12], AGA(A, γ, ε) requires at least c′ · 1
γ2ε

queries in the

24

ACTIVE TOLERANT TESTING

worst case by choosing n = d 1
2εe−1. Then, by Lemma 20, we get an Ω(1

(

min

{

1
2
,

√

log 1
ε

k

})2 · 1
2ε) =

Ω(k
ε log 1

ε

) lower bound for Ehard
U (fquery, ε, S, k) for k ∈ N

∗ and ε ∈ (0, 14).

25

